240 research outputs found

    Panchromatic radiation from galaxies as a probe of galaxy formation and evolution

    Full text link
    I review work on modelling the infrared and submillimetre SEDs of galaxies. The underlying physical assumptions are discussed and spherically symmetric, axisymmetric, and 3-dimensional radiative transfer codes are reviewed. Models for galaxies with Spitzer IRS data and for galaxies in the Herschel-Hermes survey are discussed. Searches for high redshift infrared and submillimetre galaxies, the star formation history, the evolution of dust extinction, and constraints from source-counts, are briefly discussed.Comment: to be published in IAU Symposium 284 'The Spectral Energy Distribution of Galaxies', Preston 2012, eds. R.J.Tiffs and C.C.Popesc

    Cold galaxies

    Full text link
    We use 350 mu angular diameter estimates from Planck to test the idea that some galaxies contain exceptionally cold (10-13 K) dust, since colder dust implies a lower surface brightness radiation field illuminating the dust, and hence a greater physical extent for a given luminosity. The galaxies identified from their spectral energy distributions as containing cold dust do indeed show the expected larger 350 mu diameters. For a few cold dust galaxies where Herschel data are available we are able to use submillimetre maps or surface brightness profiles to locate the cold dust, which as expected generally lies outside the optical galaxy.Comment: 9 pages, 15 figures. Accepted for publication MNRA

    Modelling the Spoon IRS diagnostic diagram

    Full text link
    We explore whether our models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of IRS spectra measured with Spitzer. The diagnostic plot of 9.7 mu silicate optical depth versus 6.2 mu PAH equivalent width, introduced by Spoon and coworkers in 2007, gives a good indication of the age and optical depth of a starburst, and of the contribution of an AGN dust torus. However there is aliasing between age and optical depth at later times in the evolution of a starburst, and between age and the presence of an AGN dust torus. Modeling the full IRS spectra and using broad-band 25-850 mu fluxes can help to resolve these aliases. The observed spectral energy distributions require starbursts of a range of ages with initial dust optical depth ranging from 50-200, optically thin dust emission ('cirrus') illuminated by a range of surface brightnesses of the interstellar radiation field, and AGN dust tori with a range of viewing angles.Comment: Accepted for publication by MNRAS. 8 pages, 10 figure

    The Imperial IRAS-FSC Redshift Catalogue (IIFSCz)

    Full text link
    We present a new catalogue, the Imperial IRAS-FSC Redshift Catalogue (IIFSCz), of 60,303 galaxies selected at 60 micron from the IRAS Faint Source Catalogue (FSC). The IIFSCz consists of accurate position, optical, near-infrared and/or radio identifications, spectroscopic redshift (if available) or photometric redshift (if possible), predicted far-infrared (FIR) and submillimetre (submm) fluxes ranging from 12 to 1380 micron based upon the best-fit infrared template. About 55% of the galaxies in the IIFSCz have spectroscopic redshifts and a further 20% have photometric redshifts obtained through either the training set or the template-fitting method. For S(60)>0.36 Jy, the 90% completeness limit of the FSC, 90% of the sources have either spectroscopic or photometric redshifts. Scientific applications of the IIFSCz include validation of current and forthcoming infrared and submm/mm surveys such as AKARI, Planck and Herschel, follow-up studies of rare source populations, large-scale structure and galaxy bias, local multiwavelength luminosity functions and source counts. The catalogue is publicly available from http://astro.imperial.ac.uk/~mrr/fss/Comment: 12 pages, 12 figures, 1 table. Revised on 23/04/09. The catalogue has been revised to correct the fluxes of extended sources. Accepted for publication in MNRA

    Detailed modelling of a large sample of Herschel sources in the Lockman Hole: identification of cold dust and of lensing candidates through their anomalous SEDs

    Get PDF
    We have studied in detail a sample of 967 SPIRE sources with 5σ detections at 350 and 500 μm and associations with Spitzer-SWIRE 24 μm galaxies in the HerMES-Lockman survey area, fitting theirmid- and far-infrared, and submillimetre, spectral energy distributions (SEDs) in an automatic search with a set of six infrared templates. For almost 300 galaxies,we havemodelled their SEDs individually to ensure the physicality of the fits. We confirm the need for the new cool and cold cirrus templates, and also of the young starburst template, introduced in earlier work. We also identify 109 lensing candidates via their anomalous SEDs and provide a set of colour–redshift constraints which allow lensing candidates to be identified from combined Herschel and Spitzer data. The picture that emerges of the submillimetre galaxy population is complex, comprising ultraluminous and hyperluminous starbursts, lower luminosity galaxies dominated by interstellar dust emission, lensed galaxies and galaxies with surprisingly cold (10–13 K) dust. 11 per cent of 500 μm selected sources are lensing candidates. 70 per cent of the unlensed sources are ultraluminous infrared galaxies and 26 per cent are hyperluminous. 34 per cent are dominated by optically thin interstellar dust (‘cirrus’) emission, but most of these are due to cooler dust than is characteristic of our Galaxy. At the highest infrared luminosities we see SEDs dominated by M82, Arp 220 and young starburst types, in roughly equal proportions

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 μ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 μ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 μ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 μ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
    corecore